Ship-in-Bottle Synthesis of [Pt₁₅(CO)₃₀]²⁻ **Encapsulated in Ordered Hexagonal Mesoporous Channels of FSM-16 and Their Effective Catalysis** in Water-Gas Shift Reaction

Takashi Yamamoto,[†] Toshifumi Shido,[†] Shinji Inagaki,[‡] Yoshiaki Fukushima,[‡] and Masaru Ichikawa*,[†]

> Catalysis Research Center, Hokkaido University Sapporo, 060 Japan Toyota Central R&D Laboratories, Inc. 41-1, Nagakute, AiChi, 480-11 Japan

> > Received September 5, 1995

There are current interests in mesoporous materials such as MCM-41¹ and FSM(folded-sheet mesoporous material)-16² having honeycomb structures with ordered enormous channels of 20–100 Å diameters, which are larger than microporous cavities (6-13 Å) of conventional zeolites such as NaY, ALPO-5, and ZSM-5. They are potential hosts for the inclusion of bulky organic and inorganic species, thus opening up new applications for the design of tailored metal catalysts³ accessible to larger substrates and the quantum dots/wires of chalcognites.⁴ We have recently developed the concept of "ship-in-bottle" technique for the challenges in rational synthesis of uni- and bimetal carbonyl clusters such as $Rh_{6-x}Ir_x(CO)_{16}(x = 0-6)$,⁵ Ru₆- $(CO)_{18}^{2-}$, 6 and $[Pt_3(CO)_6]_n^{2-}$ $(n = 3, 4)^7$ encapsulated in NaY and NaX zeolite micropores as the ultimate nanometer-size vesssels. They are useful for preparing discrete metal/alloy clusters (less than 10 Å size) which catalyze the alkane hydrogenolysis,⁵ CO hydrogenation toward C_1-C_5 alcohols⁸ and the olefin hydroformylation reaction.9 This communication describes a novel "ship-in-bottle" synthesis of robust carbonyl clusters such as $[Pt_{15}(CO)_{30}]^{2-}$ uniformly encapsulated in the ordered mesoporous channels of FSM-16 which are thermally stabilized with organic cations such as $R_4N^+(R = Me, Et, Bu, and Hex)$ and MV^{2+} (methyl viologen cation). They exhibited markedly higher catalytic activities for ¹³CO exchange and water-gas shift reactions at ambient temperatures compared with Pt9-Pt12 carbonyl clusters restricted by a NaY microporous constraint.

According to the published procedures,² the host FSM-16 was synthesized using a layered polysilicate (Kanemite; NaHSi2O5- $3H_2O$) and $C_{16}H_{33}NMe_3Cl$ as a micelle surfactant template, similar to MCM-41.¹ After calcination at 823 K, the resulting material (surface area, 950 m²/g) presents well-defined hexagonal mesoporous channels (27.5 Å) with silanol groups (3745 cm⁻¹) which were identified by X-ray powder patterns in the

- [‡] Toyota Central R&D Laboratories, Inc.
- Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kreage,
 C. T.; Smitt, K. D.; Chu, T.-W.; Olson, D. H.; Sheppard, E. W.; McCulleni,
 S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
- (2) Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 62, 763, 1535; Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem.
- Soc., Chem. Commun. 1993, 680.
- (3) (a) Ichikawa, M. Adv. Catal. **1992**, 38, 284. (b) Huber, C.; Moller, K.; Bein, T. J. Chem. Soc. **1994**, 2619. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Nature **1995**, 378, 159.
- (4) Ozin, G. A.; Ozkar, S. Chem. Mater. 1992, 4, 511. Leonm, R.; Margolese, D.; Stucky, G.; Petroff, P. M. Phys. Rev. 1995, 52, 2285.
- (5) Ichikawa, M.; Rao, L.-F.; Ito, T.; Fukuoka, A. Faraday Disc., Chem. Soc. 1989, 87, 232. Rao, L.-F.; Fukuoka, A.; Kosugi, N.; Kuroda, H.; Ichikawa, M. J. Phys. Chem. 1990, 94, 5317.
- (6) Liu, A. M.; Shido, T.; Ichikawa, M. J. Chem. Soc., Chem. Commun. **1995**, 1337
- (7) Li, G. J.; Fujimoto, T.; Fukuoka, A.; Ichikawa, M. J. Chem. Soc., Chem. Commun. 1991, 1337. Wang, R.-J.; Fujimoto, T.; Shido, T.; Ichikawa, M. J. Chem. Soc., Chem. Commun. 1992, 962; Li, G. J.; Fujimoto, T.;
- Fukuoka A.; Ichikawa, M. Catal. Lett. 1992, 12, 171.
- (8) Rao, L.-F.; Kimura, T.; Fukuoka, A.; Ichikawa, M. J. Chem. Soc., Chem. Commun. 1986, 458.
- (9) Ichikawa, M. Polyhedron 1988, 7, 2351. Fukuoka, A.; Kimura, T.; Rao, L.-F.; Kosugi, N.; Kuroda, H.; Ichikawa, M. *Catal. Today* **1988**, *6*, 55; *Appl. Catal.* **1989**, *50*, 295. Ichikawa, M.; Kimura, T.; Fukuoka, A. Stud. Surf. Sci. Catal. 1991, 60, 335.

low angle region ($2\theta = 2.26, 3.44, 4.50, \text{ and } 5.90$) and TEM techniques. A sample containing 5.0 mass% Pt was prepared by impregnation of FSM-16 with an aqueous solution of H₂-PtCl₆. This sample was exposed to CO (200 Torr) in a closed circulating system by ramping the temperature from 300 to 323 K, resulting in the IR bands at 2188, 2149, and 2119 cm^{-1} , as presented in Figure 1 (a). From the analogy of the previously reported Pt carbonyl species,¹⁰ the IR bands at 2188, 2149, and 2119 cm⁻¹ can be ascribed to cis-Pt(CO)₂Cl₂ (2188 and 2148 cm^{-1}) and Pt(CO)Cl₃ (2121 cm^{-1}). The Pt carbonyls were converted by subsequent admission of H₂O vapor (15 Torr) onto the CO atmosphere to make an olive-green product (sample A) exhibiting a steady-state spectrum (Figure 1(b)) of carbonyl bands ($\nu_{CO} = 2086$ s and 1882m cm⁻¹) and UV-vis reflectance $(\lambda_{max}; 452 \text{ and } 805 \text{ nm})$. The final spectrum closely resembles that of $[Et_4N]_2[Pt_{15}(CO)_{30}]$ in MeOH ($\nu_{CO} = 2056s$ (terminal) and 1872m (bridged) cm⁻¹, λ_{max} ; 408 and 697 nm) and crystal,¹¹ Attempts to extract the platinum carbonyl species from sample A with THF (tetrahydrofuran) and MeOH were unsuccessful but did occur with [(Ph₃P)₂N]Cl in THF, which selectively gave an appreciable amount of $[(Ph_3P)_2N]_2[Pt_{15}(CO)_{30}]$ ($\nu_{CO} = 2056s$ and 1872m cm⁻¹; λ_{max} ; 405 and 702 nm in THF). Accordingly, a tentative explanation suggests that [Pt₁₅(CO)₃₀]²⁻ was uniformly formed in mesoporous channels of FSM-16 by the reductive carbonylation of H₂PtCl₆/FSM-16, which may react by the homogeneous synthesis in solution.¹¹

It was found that $[Pt_{15}(CO)_{30}]^{2-}$ in FSM-16 (sample A) is relatively unstable, and evacuation of sample A at 10^{-4} Torr and 300-323 K led to an irreversible transformation due to partial removal of CO to give the brownish product ($v_{CO} =$ 2063s and 1820w cm^{-1}), which resembles those of the higher nuclearity Pt carbonyl clusters such as $[Pt_{24}(CO)_{48}H_x]^{2-}$ and $[Pt_{38}(CO)_{44}]^{2-}$ ($\nu_{CO} = 2060-2043$ s and 1832-1820w cm⁻¹) in THF solution.¹² As presented in Figure 2, the electron micrograph of the evacuated sample A showed that platinum aggregates having a ca. 15 Å diameter, probably composed of 35-55 Pt atoms were uniformly distributed along the ordered mesoporous channels of FSM-16 crystals with a negligible formation of external particles.

On the other hand, the thermostable $[Pt_{15}(CO)_{30}]^{2-}$ in FSM-16 was successfully prepared using the FSM-16 which was coimpregnated with H₂PtCl₆ and quarternary alkyl ammonium salts (R_4NX ;R = methyl, ethyl, butyl, and hexyl; X = Cl, Br, and OH) and methyl viologen chloride, [MV²⁺]Cl₂;

from each aqueous solution. The reductive carbonylation of each coimpregnated sample resulted in an olive-green product (UV-vis reflectance at 450 and 805 nm), showing the intense CO bands which appeared at 2075-2079s and 1875-1884m cm⁻¹ relatively shifted to higher frequencies by varying the larger quaternary alkyl ammonium cations. It is worthy to note that those organic cations play a role in stabilizing the robust Pt₁₅ carbonyl cluster dianion and their thermostabilities in the FSM-16 channels at 323-393 K decreased by varying the used quaternary ammonium cations $(R_4N^+ \text{ and } MV^{2+})$ in the following order: ethyl > butyl > methyl > MV > hexyl \gg non.

EXAFS measurements at the Pt L_{III} edge (11 562 eV) were carried out in the transmission mode at the BL-10B, Photon Factory at National Laboratory for High Energy Physics (KEK-PF) with a stored energy of 2.5 Gev and ring currents between 100 and 250 mA. The backscattering amplitude and phase-

To whom all correspondence should be addressed.

[†] Hokkaido University

⁽¹⁰⁾ Irving, R. J.; Magnusson, E. A. J. Chem. Soc. 1956, 1860; 1958, 2283.

⁽¹¹⁾ Calabrese, J. C.; Dahl, L. F.; Chini, P.; Longoni, G.; Martinengo, S. J. Am. Chem. Soc. 1974, 96, 2614.

⁽¹²⁾ Fujimoto, T.; Fukuoka, A.; Iijima, S.; Ichikawa, M. J. Phys. Chem. 1993, 97, 279; Roth, J. D.; Lewis, G. J.; Safford, L. K.; Jiang, X.; Dahl, L. F.; Weaver, M. J. J. Am. Chem. Soc. 1992, 114, 6159.

Figure 1. In-situ FTIR spectra in the reaction of $H_2PtCl_0/FSM-16$ with CO(200 Torr) at 323 K for 12 h (a) and with CO (200 Torr) + H_2O (15 Torr) at 323 K for 6 h (b).

Figure 2. Transmission electron microgram of (a) $[Pt_{15}(CO)_{30}]^{2-}$ /FSM-16 (sample A) after evacuation at 300–323 K for 2 h, where the speckles having sizes of 10–20 Å are uniformaly distributed in the mesoporous hexagonal channels (27.5 Å diameter) of FSM-16.

shift of Pt–Pt, Pt–CO were extracted from EXAFS spectra of Pt foil and W(CO)₆, respectively. EXAFS data for [Pt₁₅-(CO)₃₀]^{2–}/NEt₄/FSM-16 (sample B), [Pt₁₂(CO)₂₄]^{2–}/NaY (sample C) prepared according to the published procedure⁷ and [NEt₄]₂-[Pt₁₅(CO)₃₀] diluted in BN (boron nitride) as a reference (sample D) were obtained under a N₂ atmosphere at 300 K. The

Table 1. Catalytic Performances in ¹³CO Exchange and Water-Gas Shift Reaction (WGSR) on $[Pt_{15}(CO)_{30}]^{2-}$ Bound with Organic Cations in FSM-16, $[Pt_3(CO)_6]_n^{2-}$ (n = 3,4)/NaY and Pt/γ -Al₂O₃

Pt carbonyl clusters/ FSM-16 or NaY	13 CO exchange reaction $k/\min (300 \text{ K})^a$	WGSR k '/min(300 K) ^b
$\frac{[Pt_{15}(CO)_{30}]^{2-}[NEt_{4}]^{+}/FSM-16}{[Pt_{15}(CO)_{30}]^{2-}[NBu_{4}]^{+}/FSM-16}$	123	12 4.8
$[Pt_{15}(CO)_{30}]^{2-}[MV]^{2+}/FSM-16$		22
[Pt ₁₂ (CO) ₂₄] ²⁻ /NaY	7	0.42
[Pt9(CO)18] ²⁻ /NaY	9	0.75
Pt/γ -Al ₂ O ₃ ^c		0.02

^{*a*} ¹³CO(100 Torr); TOF (mmol/Pt atom/min). ^{*b*} CO (200 Torr) + H₂O (15 Torr); TOF (CO₂) (mmol/Pt atom/min) X 10^{-2} . ^{*c*} The catalyst was prepared conventionally by H₂-reduction at 673 K for 2 h after H₂PtCl₆ impregnated on γ-Al₂O₃ (4 mass% Pt).

observed Pt L-edge shapes for samples B and C were similar to that of [NEt₄]₂[Pt₁₅(CO)₃₀]/BN (sample D) and EXAFS analysis of the neighboring Pt-Pt frameworks in terms of coordination number (N_c) and interatomic distances (R) provided direct evidence for the stoichiometric formation of trigonal prismatic $[Pt_3(CO)_6]_n^{2-}$ (n = 4, 5) cluster complexes within the FSM-16 channels and NaY cavities. It is of interest to find that for $[Pt_{15}(CO)_{30}]^{2-}$ encapsulated in FSM-16 (sample B) the average interatomic distances of Pt-Pt between adjacent triplatinum planes($R_2 = 3.08$ Å; $N_c^2 = 1.6$) are slightly enlongated, compared with that of $[NEt_4]_2[Pt_{15}(CO)_{30}]/BN$ (sample D) (R_2 = 3.07 Å; N_c^2 = 1.5) and the X-ray analysis of [PPN]₂[Pt₁₅-(CO)₃₀] in crystal (R_2 = 3.05 Å; N_c^2 = 1.5).¹¹ In contrast, the inter-triplatinum distances of the Pt12 cluster frameworks in NaY micropores (sample C; $N_c^2 = 1.5$, $R_2 = 2.99$ Å) are fairly shorter $(\Delta R = 0.08 \text{ Å})$ for that of [PPN]₂[Pt₁₂(CO)₃₀]/BN ($R_2 = 3.07$ Å; $N_c^2 = 1.5$) within the experimental error ($\Delta R = 0.02$ Å). The NMR study by Heaton et al.13 on the structure of $[Pt_{15}(CO)_{30}]^{2-}$ in solution showed that the Pt₃ triangle was fluxionally rotated in the Pt3 plane, which causes the wide distribution of the Pt-Pt distances of the inter-Pt₃ triangle planes. Hence, the slight elongation of the Pt-Pt distance of the inter-Pt₃ planes for sample B may be caused by the fluxional rotation of the Pt₃ triangle of the Pt₁₅ carbonyl clusters (8 \times 12.3 Å van der Waals diameter) in the enormous channels of FSM-16 (27.5 Å). In contrast, the Pt₁₂ carbonyl clusters (8 \times 10 Å rod) encapsulated in the NaY micropores may be frozen due to the intrazeolitic constraint (12 Å effective diameter).

The WGS reaction (CO + $H_2O \rightarrow CO_2 + H_2$) was performed at reduced pressure ($P_{CO} = 50$ Torr, $P_{H_{2O}} = 20$ Torr) using a closed circulating Pyrex glass reactor charged with the powdered samples of $[Pt_{15}(CO)_{30}][R_4N^+]/FSM-16(R = Et and Bu)$, $[Pt_{15} (CO)_{30}$ [MV²⁺]/FSM-16, [Pt₁₂(CO)₂₄]²⁻/NaY, and [Pt₉(CO)₁₈]²⁻/ NaY at 300-373 K. The products were analyzed by GC using Porapack Q (2m; 363 K) and MS-5A (1 m; 363 K) columns with a thermal conductivity detector. As shown in Table 1, [Pt₁₅(CO)₃₀]²⁻ clusters with organic cations in FSM-16 exhibited remarkably higher activities (20-100 times) in the WGS reaction to form an equimolar mixture of CO₂ and H₂ than those on $[Pt_{12}(CO)_{24}]^{2-}$ and $[Pt_9(CO)_{18}]^{2-}$ in NaY and the conventional Pt/Al_2O_3 catalyst (4 mass% Pt). Moreover, it was demonstrated that the carbonyls of $[Pt_{15}(CO)_{30}]^{2-}$ in FSM-16 underwent facile isotopic exchange of ¹³CO at 300 K. As shown in Table 1, the exchange rates in TOF varied upon the sorts of organic cations in FSM-16, whereas the carbonyl exchange of Pt₉ and Pt₁₂ clusters in the NaY micropores proceeded very slowly. From this evidence, it is suggested that $[Pt_{15}(CO)_{30}]^2$ entrapped in the ordered mesoporous channels of FSM-16 exhibits higher activities in the WGSR and ¹³CO exchange reactions probably due to their flexible cluster frameworks and sufficient diffusibility of reactant gases compared with the Pt₉ and Pt12 carbonyl clusters which are restricted by a NaY micropore constraint.

JA953065O

⁽¹³⁾ Brown, C.; Heaton, B. T.; Towl, A. D. C.; Chini, P. J. Organomet. Chem. 1979, 181, 233.